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Outline 

•  A few recent advances in LETKF 
–  Running in Place (Yang et al, Penny et al) 
–  Effective assimilation of precipitation (Lien et al) 
–  Ensemble Forecast Sensitivity to Observations (EFSO)  
(Kalnay et al, Ota et al, Daisuke Hotta, thanks to JCSDA!)  

•  Parameter estimation with LETKF allows us to estimate surface fluxes. 
•  Simultaneous assimilation of carbon and meteorological observations 
•  Advanced methods: “variable localization”, vertical localization based on 

processes, additive and multiplicative adaptive localization)  
•  Are short or long assimilation windows better? We use 6hr windows 
 
 
Results: 
•  Carbon cycle data assimilation OSSE successful results with LETKF-C 
•  Estimation of surface heat and moisture fluxes 
•  Estimation of wind stress in addition to SHF and LHF 
•  Plans 



4D-Local Ensemble Transform Kalman Filter ���
(Ott et al, 2004, Hunt et al, 2004, 2007)���
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•  Model independent 
(black box) 
• No adjoint needed 
•  4D LETKF extension 
•  Obs. assimilated 
simultaneously at each 
grid point 
•  LETKF computes the 
weights for the ensemble 
forecasts explicitly 

(Start with initial 
ensemble) 

LETKF Observation 
operator 

Model 

ensemble  
analyses 

ensemble 
forecasts 

ensemble   

“obs” 

Observations 



Localization based on observations 
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Perform data assimilation in a local volume, choosing 
observations  

The state estimate is updated at 
the central grid red dot 

 



Localization based on observations 
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Perform data assimilation in a local volume, choosing 
observations  

The state estimate is updated at 
the central grid red dot 

All observations (purple 
diamonds) within the local 
region are assimilated 

The LETKF algorithm can be described in a single slide! 



Local Ensemble Transform Kalman Filter (LETKF) 
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Forecast step:       
Analysis step: construct 
 
 
 
Locally: Choose for each grid point the observations to be used, 
and compute the local analysis error covariance and 
perturbations in ensemble space: 
  
 
Analysis mean in ensemble space: 
and add to      to get the analysis ensemble in ensemble space.  

The new ensemble analyses in model space are the columns of                
                  . Gathering the grid point analyses forms the 

new global analyses. Note that the the output of the LETKF are 
analysis weights         and perturbation analysis weight matrices  
These weights multiply the ensemble forecasts. 

   
x n,k

b = M n x n−1, k
a( )

X b = x1
b − xb | ... | x K

b − xb⎡⎣ ⎤⎦;

y i
b = H (x i

b ); Yn
b = y1

b − yb | ... | y K
b − yb⎡⎣ ⎤⎦

Pa = K −1( )I +YTR−1Y⎡⎣ ⎤⎦
−1
;Wa = [(K −1) Pa ]1/2

X n
a = X n

bWa + xb

wa = PaYbTR−1(yo − yb )
Wa

Globally: 

  w
a Wa



7 

No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Quasi Outer Loop (QOL)
 “Running in place” (RIP) for faster spin-up
 Use of future data in reanalysis
 Ability to use longer windows and nonlinear perturbations

tn tn-1 

Kalnay & Yang, 2010, Yang et al, 2012 



Promising new tools for the LETKF (1) 
 

1.  Running in Place (Kalnay and Yang, QJ 2010, 
Yang, Kalnay, and Hunt, MWR, 2012) 
•  It extracts more information from observations by 
using them more than once (sometimes considered 
a mortal sin!). 
•  Useful during spin-up (e.g., hurricanes and 
tornados). 
•  It uses the “no-cost smoother”, Kalnay et al., 
Tellus, 2007b. 
•  Typhoon Sinlaku (Yang et al., 2012) 
•  7-years of Ocean Reanalysis (Penny, 2011, Penny 
et al., 2013) 8 
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LETKF-RIP with real observations  
(Typhoon Sinlaku, 2008)  

11/23/2011@NTU-­‐TIMS	
  

SYNOP(+),SOUND(△),	
  
DROPSONDE(○),	
  
Typhoon	
  center	
  (X)	
   RIP	
  uses	
  beFer	
  the	
  “limited	
  observaMons”!	
  

Flight	
  data	
  

Typhoon	
  Sinlaku	
  (2008)	
  

3-­‐day	
  forecast	
  

Obs	
  
LETKF-­‐RIP	
  
LETKF	
  

Courtesy of Prof. Shu-Chih Yang (NCU, Taiwan) 
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LETKF-RIP B/A 

FREE-­‐RUN	
  

LETKF-IAU B 

SODA B 
SODA A 

LETKF-IAU A 

RMSD (ºC) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Temperature (oC),  
12-month moving average  

LETKF with IAU, SODA and LETKF with RIP 

7 years of Ocean Reanalysis  
Temperature (Penny, 2011) 
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LETKF-RIP B/A 

Free-­‐Run	
  

SODA B 
SODA A 

LETKF-IAU A 

RMSD (psu) (All vertical levels) B: background 
A: analysis 

Global RMS(O-F) of Salinity (psu),  
12-month moving average  

LETKF with IAU, SODA and LETKF with RIP 

7 years of Ocean Reanalysis 
Salinity (Penny, 2011) 



Promising new tools for the LETKF (2) 
 

2.  Effective assimilation of Precipitation (Guo-Yuan 
Lien, E. Kalnay and T. Miyoshi, 2013) 
•  Assimilation of precipitation has generally failed to 
improve forecasts beyond a day. 
•  A new approach deals with non-Gaussianity, and 
assimilation of both zero and non-zero precipitation.  
•  Rather than changing moisture to force the model to rain 
as observed, the LETKF changes the potential vorticity. 
•  But LETKF needs Gaussian errors. 
•  So, we tried converting precip into a Gaussian 
distribution.  
•  The model now “remembers” the assimilation, so that 
that medium range forecasts are improved in the OSSEs. 
 

12 
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G−1 (x ) = 2erf −1 (2x −1)

Start with pdf of 
y=rain at every grid 

point. 
 

 “No rain” is like a 
delta function that we 

cannot transform. 
 

We assign all “no 
rain” to the median of 

the no rain CDF. 
 

We found this works 
as well as more 

complicated 
procedures. 

 
It allows to assimilate 
both rain and no rain. 

 

How do we transform precipitation y to a Gaussian 
ytransf? (Lien et al. 2013) 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Main result: with at least 10 ensemble members raining in 
order to assimilate an obs, updating all variables (including 
vorticity), with Gaussian transform, and rather accurate 
observations (20% errors), the analyses and forecasts are 
much improved!  

•  Updating only Q is much less effective.  
•  The 5-day forecasts maintain the advantage! 
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Raobs 

Gaussian, 10 members rain,  
20% error, all variables 

Only Q 

•  Plans (Lien et al., 2014):  

•  OSSEs with imperfect model: GFS nature, SPEEDY model. 

•  Assimilate into GFS the TMPA (TRMM+) global 
precipitation, in preparation for the new PMM system. 



Promising new tools for the LETKF (3) 

3.  Forecast Sensitivity to Observations and 
proactive QC 

 (with Y Ota, T Miyoshi, J Liu, J Derber, D Hotta)  
•  A simpler, more accurate formulation for the Ensemble 
Forecast Sensitivity to Observations (EFSO, Kalnay et al., 
2012, Tellus). 
•  Ota et al., 2013 (Tellus) tested it with the NCEP EnSRF-GFS 
operational system using all operational observations. 
•   The results obtained comparing the impact of all obs. are 
similar to Langland and Baker (2004) and Gelaro and Zhu. 
•  Allows to identify “bad observations” after 12 or 24hr, and 
then repeat the data assimilation without them: “proactive 
QC”. 
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“Proactive QC”:  
Bad observations can be  identified by EFSO and 

withdrawn from the data assimilation 

After identifying MODIS polar winds producing bad 
24 hr regional forecasts, the withdrawal of these 

winds reduced the forecast errors by 39%, as 
projected by EFSO. 



Promising new tools for the LETKF (4) 

4. Estimation of surface fluxes as evolving 
parameters   
(Kang et al., 2011, JGR, Kang et al., 2012, JGR) 
•  important for the carbon cycle  
•  surface fluxes of heat, moisture, and momentum  
•  eventually for coupled data assimilation 

This is the rest of the talk: Ji-Sun Kang*   
with E. Kalnay, J. Liu and Inez Fung 

* Now at KIAPS 
(Korean Institute for Atmospheric Prediction Systems) 
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UMD-UCB LETKF-C System 
Parameter estimation:  
state vector augmentation 

–  Append CF (surface CO2 fluxes) 
–  Update CF as part of the data assimilation process 

•  Simultaneous assimilation of carbon and 
meteorological variables 
–  Multivariate analysis with a localization of the 

variables (Kang et al., 2011) 
–  Update all variables (including CF) every 6 hours 

Xb = X
CF

⎡

⎣
⎢

⎤

⎦
⎥

: model state vector 
  (U, V, T, q, Ps, C) 

: surface CO2 flux 

Observations 
U, V, T, q, Ps, C 

Forecast 
U, V, T, q, Ps, C 

LETKF (analysis) 
U, V, T, q, Ps, C, CF 



“Localization of variables” (Kang et al, JGR 2011) 

 

Schematic background error covariance matrix Pb.  
 Zeroing out the background error covariance 
between unrelated variables improves the result 
of the analysis by reducing sampling errors. 



Results: Variable localization reduces sampling errors 

AOSC department seminar, Oct. 20, 
2011 21 

True CO2 fluxes  

Analysis of CO2 fluxes 
with variable localization 

  

Analysis of CO2 fluxes 
without variable localization 

  

(anthropogenic) 



LETKF-C with SPEEDY-C 
•  Model: SPEEDY-C (Molteni, 2003; Kang, 2009) 

–  Spectral AGCM model with T30L7 
–  Prognostic variables: U, V, T, q, Ps, C 

•  C (atmospheric CO2): an inert tracer  
–  Persistence forecast of Carbon Fluxes (CF), no observations 

•  True CO2 fluxes: From CASA (Gurney et al, 2004) 
•  Simulated observations 

–  Rawinsonde observations of U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  18 hourly and 107 weekly data on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere  
•  GOSAT whose averaging kernel is nearly uniform throughout the 

column 

•  Initial condition: random (no a-priori information) 
•  20 ensembles 



LETKF-C with SPEEDY-C 
•  Simulated observations 

–  Rawinsonde observations of U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  18 hourly and 107 weekly data on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere  
•  GOSAT whose averaging kernel is nearly uniform throughout the 

column 

•  Initial conditions: random (no a-priori information) 
•  20 ensemble members 
•  No direct measurement of surface Carbon Fluxes 
•  CF only changes through the LETKF:  

persistence forecast. 



Ini$al	
  condi$ons:	
  random,	
  no	
  a	
  priori	
  informa$on	
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Impact	
  of	
  infla$on:	
  fixed	
  mul$plica$ve	
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Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Nature 
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adaptM+addi 
fixedM+addi 
fixedM 

Impact	
  of	
  infla$on:	
  fixed	
  mul$plica$ve+addi$ve	
  

Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Nature 
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adaptM+addi 
fixedM+addi 
fixedM 

Time series of surface CO2 fluxes over East of North America 

adaptM+addi 
fixedM+addi 
fixedM 

Impact	
  of	
  infla$on:	
  Adap$ve	
  mul$plica$ve+addi$ve	
  

Nature 



▼  True CF ▼ ▼  Analysis of CF ▼ 

Results 
00Z01APR  
After three months of DA 

00Z01AUG  
After seven months of DA 

00Z01JAN  
After one year of DA 

We succeeded in estimating time-evolving CF at model-grid scale! 



Assimilation window for Carbon fluxes inversion: 
current systems use a very long window 

•  CO2 data assimilation system 
–  A short assimilation window reduces the attenuation of observed 

CO2 information because the analysis system can use the strong 
correlation between C and CF before the transport of atmospheric 
CO2 blurs out the essential information of surface CO2 forcing 

–  We may not be able to reflect the optimal correlation between C and 
CF within a long assimilation window, which can introduce sampling 
errors into the EnKF analysis 



Long vs. short window in LETKF-C 

•  OSSEs with SPEEDY-C 
–  Realistic observation distributions for meteorological variables 

and CO2 
•  Rawinsonde observation for (U, V, T, q, Ps)  
•  Ground-based observations, AIRS and GOSAT CO2 mixing ratio for C 

•  Experiment 1: Analysis from LETKF-C  
–  Simultaneous analysis with a 6-hour assimilation window 

•  Experiment 2: Analysis from a long (3-week) assimilation 
window  
–  With this long assimilation window, ensemble perturbations of 

meteorological variables become non-linear so that we do not 
include wind uncertainty for CO2 data assimilation (Carbon-
Univariate DA) 





A B 



Impact of CO2 transport 

Strong source Significant sink 

A 
B  

33 

°  Strong easterly from the source 
region to the sink region brings CO2 
increase information over the sink 
area 

è There are incorrect positive CF from 
OCT to DEC (the end of DA) 

A B 



Summary of LETKF-C carbon fluxes 

•  Assimilation window 
–  EnKF has better performance with a short 

window 
– CO2 observations may be able to provide 

some information to distant CF, but it 
becomes blurred (an ill-posed problem).  

•  Implement LETKF-C on the NCAR CAM 
model 
– OSSE with realistic observations 
– Very slow (only 26 days) 
–  Preliminary results are encouraging 



LETKF-C with NCAR CAM3.5 
•  Model: CAM 3.5  

–  Finite Volume dynamical core 
–  2.5°×1.9° of horizontal resolution with 26 layers in 

the vertical 
–  C (atmospheric CO2) is an inert tracer  
–  Persistence forecast of CF 

•  Simulated observations with real observation 
coverage 
–  Conventional data for U, V, T, q, Ps 
–  Ground-based observations of atmospheric CO2  

•  ~10 hourly and ~100 weekly records on the globe 
–  Remote sensing data of column mixing CO2  

•  AIRS whose averaging kernel peaks at mid-troposphere 
•  Initial conditions: random (no a-priori information) 
•  64 ensembles 



True CF @ initial time (00Z01JAN)
 Initial CF


True CF @ 00Z27JAN)
 CF analysis @ 00Z27JAN


10-8kgCO2/m2/s


LETKF-­‐CAM	
  3.5	
  analysis	
  



LETKF-CAM3.5 CF analysis


•  Time series of surface CO2 fluxes and 
atmospheric CO2 concentrations over Europe 
(observation-rich area)




Surface Heat and Moisture Fluxes 

•  Can we estimate surface moisture/heat fluxes by 
assimilating atmospheric moisture/temperature 
observations? We can use the same methodology! 

•  OSSEs 
–  Nature: SPEEDY (perfect model) 
–  Forecast model: SPEEDY with persistence forecast of 

Sensible/Latent heat fluxes (SHF/LHF) 
–  Observations: conventional observations of (U, V, T, 

q, Ps) and AIRS retrievals of (T, q) 
–  Analysis: U, V, T, q, Ps + SHF & LHF  

•  Fully multivariate data assimilation 
•  Adaptive multiplicative inflation + additive inflation 
•  Initial conditions: random (no a-priori information) 



Results: SHF  
(with perfect wind stress parameterization) 

True SHF @ end of JAN SHF analysis @ end of JAN 

True SHF @ end of JUN SHF analysis @ end of JUN 



True LHF @ end of JAN LHF analysis @ end of JAN 

True LHF @ end of JUN LHF analysis @ end of JUN 

Results: LHF  
(perfect wind stress parameterization) 



Time series of SHF  
(perfect wind stress parameterization) 



Time series of LHF  
(perfect wind stress parameterization) 



Summary of SHF & LHF DA  
(with perfect WSTR parameterization) 

•  AIRS retrievals of T and q provide accurate and 
abundant information for constraining surface heat 
and moisture fluxes 
–  Observation error: 1K for T and 1.0g/kg for q 
–  Global coverage at every 12 hours 

è After a short spin-up period (~a week), 
estimation of SHF and LHF converges very well  

•  But results shown here are given under the 
assumption of a perfect wind stress 
parameterization.   



Can we also estimate wind stress? 

•  OSSEs 
–  Nature: SPEEDY 
–  Forecast model: SPEEDY with persistence 

forecast of Sensible/Latent heat fluxes (SHF/LHF) 
and wind stress (USTR, VSTR) [ALL_FLUXES] 

–  Observations: conventional observations of (U, V, 
T, q, Ps), AIRS retrievals of (T, q), and ASCAT 
ocean surface wind observations  

•  Observation error of ASCAT: 3.5m/s (not as good as 
AIRS data) 

•  ASCAT covers the global ocean every 12 hours, but with little 
overlap with AIRS. 

•  Analysis: U, V, T, q, Ps + SHF, LHF, USTR, VSTR  
•  Fully multivariate data assimilation 
•  Initial conditions: random (no a-priori information) 



Result: USTR from [ALL_FLUXES] 

 Initial condition includes no 
a-priori information of USTR 

 After one month of DA, USTR estimation is close to the true USTR  



Results: SHF from [ALL_FLUXES] 

§  Although the estimated wind stress does look okay, the imperfection of the 
wind stress contaminates the estimation of SHF and LHF significantly 

 True SHF 

 SHF analysis with perfect WSTR  

▼  SHF analysis with WSTR DA ▼ 



Results: LHF from [ALL_FLUXES] 

§  Although the estimated wind stress does look okay, the imperfection of the 
wind stress contaminates the estimation of SHF and LHF significantly 

è Analyses diverged… 

 True LHF 

 LHF analysis with perfect WSTR  

▼  LHF analysis with WSTR DA ▼ 



1) Filtering analysis increments? 

•  Due to the limited observational contents, we may 
not be able to expect analysis increment with a full 
resolution 
–  Filtering out high wavenumbers from the 

analysis increments for 2d parameters (SHF, LHF, 
USTR, VSTR) using the Shapiro filter 
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Time series of RMS errors 

•  Filtering analysis increment reduces 
analysis error remarkably and 
produces quite stable results 

•  However, there are still errors 
growing in time especially for the 
parameters (SHF, LHF, USTR, VSTR) 

Analysis w/o filtering Analysis w/ filtering Analysis with perfect WSTR 



Time series of spatial correlation 

•  Filtering analysis 
increments prevents 
(or delays) the 
estimated parameters 
from losing spatial 
correlation in time. 

Analysis w/o filtering Analysis w/ filtering Analysis with perfect WSTR 



2) increasing ensemble size 

•  We introduced too many unknowns into the 
analysis system, and thus increasing ensemble 
size may help. 

•  Control experiments: 40 ensembles 
•  Experiments with 80 ensembles have been 

examined 



Results 
•  Spatial correlation (left) and RMSE 

(right) 
–  Blue: 80 ensembles 
–  Red: 40 ensembles 
–  Green: perfect WSTR with 40 

ensembles 

U 

T 

USTR 

SHF 

USTR 

SHF 

è Doubling ensemble 
size reduces error 
and increase spatial 
correlation of the 
estimates, but it 
seems not enough to 
produce stable 
estimation of 
parameters 
throughout the 
analysis period 



USTR 
•  Estimated USTR 

looks 
reasonable  

Observation-poor area 



SHF 
•  SHF tends to be 

underestimated, 
especially over the 
ocean 

•  Estimation over the 
land (area 4 and 6) 
has relatively good 
performance 
– Better 

observations over 
land Observation-poor area 



LHF 
•  LHF is overestimated, 

especially over the ocean 
è “improper 

partitioning” (e.g.Vinukoll
u et al. 2012) 

•  Estimation over the land 
(area 5 and 7) has 
relatively good 
performance 
–  Area 6 is also over the 

land, but there are few 
rawinsonde 
observations 

è Results depends on the 
observational contents 
since our methods does 
not use any a-priori 
information Observation-poor area 



Global maps of USTR 

•  00Z01JUN after a 5-month DA 
•  Over land, estimation of USTR 

agrees reasonably well with the 
true USTR in both experiments w/ 
80 and 40 ensembles 

[N/m2] 



Summary 
•  We have shown the feasibility of simultaneous analysis of 

meteorological and carbon variables within LETKF framework 
through OSSEs. 

•  The system LETKF-C has been tested in a intermediate-
complexity model SPEEDY-C with excellent results. 
–  Multivariate data assimilation with “localization of 

variables”  (Kang et al. 2011) 
–  Advanced data assimilation methods for CO2 flux 

estimation have been explored (Kang et al. 2012) 
•  Implementation of the LETKF-C to NCAR CAM 3.5 model: 

–  Analysis step shows very good performance in OSSE 
with real observation coverage 

–  The same methodology has been applied to estimating 
surface fluxes of heat, moisture and momentum, and the 
results are promising! 


